Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Haematologica ; 109(2): 493-508, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560801

RESUMO

The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Hibridização in Situ Fluorescente , Translocação Genética , Rearranjo Gênico , Linfoma Difuso de Grandes Células B/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cromossomos Humanos Par 14/genética
4.
PLoS One ; 18(3): e0283186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961799

RESUMO

MicroRNAs (miRNAs) are small non coding RNAs responsible for posttranscriptional regulation of gene expression. Even though almost 2000 precursors have been described so far, additional miRNAs are still being discovered in normal as well as malignant cells. Alike protein coding genes, miRNAs may acquire oncogenic properties in consequence of altered expression or presence of gain or loss of function mutations. In this study we mined datasets from miRNA expression profiling (miRNA-seq) of 7 classic Hodgkin Lymphoma (cHL) cell lines, 10 non-Hodgkin lymphoma (NHL) cell lines and 56 samples of germinal center derived B-cell lymphomas. Our aim was to discover potential novel cHL oncomiRs not reported in miRBase (release 22.1) and expressed in cHL cell lines but no other B-cell lymphomas. We identified six such miRNA candidates in cHL cell lines and verified the expression of two of them encoded at chr2:212678788-212678849 and chr5:168090507-168090561 (GRCh38). Interestingly, we showed that one of the validated miRNAs (located in an intron of the TENM2 gene) is expressed together with its host gene. TENM2 is characterized by hypomethylation and open chromatin around its TSS in cHL cell lines in contrast to NHL cell lines and germinal centre B-cells respectively. It indicates an epigenetic mechanism responsible for aberrant expression of both, the TENM2 gene and the novel miRNA in cHL cell lines. Despite the GO analysis performed with the input of the in silico predicted novel miRNA target genes did not reveal ontologies typically associated with cHL pathogenesis, it pointed to several interesting candidates involved in i.e. lymphopoiesis. These include the lymphoma related BCL11A gene, the IKZF2 gene involved in lymphocyte development or the transcription initiator GTF2H1.


Assuntos
Doença de Hodgkin , Linfoma de Células B , Linfoma não Hodgkin , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Hodgkin/patologia , Linhagem Celular , Centro Germinativo/patologia , Linfoma de Células B/genética , Linfoma não Hodgkin/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo
6.
Leukemia ; 37(2): 408-421, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509891

RESUMO

SOX11 overexpression has been associated with aggressive behavior of mantle cell lymphomas (MCL). SOX11 is overexpressed in embryonic and cancer stem cells (CSC) of some tumors. Although CSC have been isolated from primary MCL, their relationship to SOX11 expression and contribution to MCL pathogenesis and clinical evolution remain unknown. Here, we observed enrichment in leukemic and hematopoietic stem cells gene signatures in SOX11+ compared to SOX11- MCL primary cases. Musashi-2 (MSI2) emerged as one of the most significant upregulated stem cell-related genes in SOX11+ MCLs. SOX11 is directly bound to the MSI2 promoter upregulating its expression in vitro. MSI2 intronic enhancers were strongly activated in SOX11+ MCL cell lines and primary cases. MSI2 upregulation was significantly associated with poor overall survival independently of other high-risk features of MCL. MSI2 knockdown decreased the expression of genes related to apoptosis and stem cell features and significantly reduced clonogenic growth, tumor cell survival and chemoresistance in MCL cells. MSI2-knockdown cells had reduced tumorigenic engraftment into mice bone marrow and spleen compared to control cells in xenotransplanted mouse models. Our results suggest that MSI2 might play a key role in sustaining stemness and tumor cell survival, representing a possible novel target for therapeutic interventions in MCL.


Assuntos
Linfoma de Célula do Manto , Proteínas de Ligação a RNA , Animais , Camundongos , Linfoma de Célula do Manto/patologia , Fatores de Transcrição SOXC/genética , Proteínas de Ligação a RNA/metabolismo
7.
Nat Genet ; 54(11): 1675-1689, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333502

RESUMO

The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Sequenciamento Completo do Genoma , Mutação , Genômica , Prognóstico
8.
Clin Epigenetics ; 14(1): 148, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376973

RESUMO

BACKGROUND: The molecular pathogenesis of T-cell large granular lymphocytic leukemia (T-LGLL), a mature T-cell leukemia arising commonly from T-cell receptor αß-positive CD8+ memory cytotoxic T cells, is only partly understood. The role of deregulated methylation in T-LGLL is not well known. We analyzed the epigenetic profile of T-LGLL cells of 11 patients compared to their normal counterparts by array-based DNA methylation profiling. For identification of molecular events driving the pathogenesis of T-LGLL, we compared the differentially methylated loci between the T-LGLL cases and normal T cells with chromatin segmentation data of benign T cells from the BLUEPRINT project. Moreover, we analyzed gene expression data of T-LGLL and benign T cells and validated the results by pyrosequencing in an extended cohort of 17 patients, including five patients with sequential samples. RESULTS: We identified dysregulation of DNA methylation associated with altered gene expression in T-LGLL. Since T-LGLL is a rare disease, the samples size is low. But as confirmed for each sample, hypermethylation of T-LGLL cells at various CpG sites located at enhancer regions is a hallmark of this disease. The interaction of BLC11B and C14orf64 as suggested by in silico data analysis could provide a novel pathogenetic mechanism that needs further experimental investigation. CONCLUSIONS: DNA methylation is altered in T-LGLL cells compared to benign T cells. In particular, BCL11B is highly significant differentially methylated in T-LGLL cells. Although our results have to be validated in a larger patient cohort, BCL11B could be considered as a potential biomarker for this leukemia. In addition, altered gene expression and hypermethylation of enhancer regions could serve as potential mechanisms for treatment of this disease. Gene interactions of dysregulated genes, like BLC11B and C14orf64, may play an important role in pathogenic mechanisms and should be further analyzed.


Assuntos
Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/metabolismo , Leucemia Linfocítica Granular Grande/patologia , Epigenoma , Metilação de DNA , Fatores de Transcrição/genética , Biomarcadores/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/genética
9.
Nat Commun ; 13(1): 6220, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266281

RESUMO

Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.


Assuntos
Linfoma , Receptor Notch1 , Humanos , Receptor Notch1/metabolismo , Antígeno B7-H1/metabolismo , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Transdução de Sinais , Receptor Notch2/genética , Receptor Notch2/metabolismo , Linfoma/genética
10.
Nat Genet ; 54(11): 1664-1674, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35927489

RESUMO

Recent advances in cancer characterization have consistently revealed marked heterogeneity, impeding the completion of integrated molecular and clinical maps for each malignancy. Here, we focus on chronic lymphocytic leukemia (CLL), a B cell neoplasm with variable natural history that is conventionally categorized into two subtypes distinguished by extent of somatic mutations in the heavy-chain variable region of immunoglobulin genes (IGHV). To build the 'CLL map,' we integrated genomic, transcriptomic and epigenomic data from 1,148 patients. We identified 202 candidate genetic drivers of CLL (109 new) and refined the characterization of IGHV subtypes, which revealed distinct genomic landscapes and leukemogenic trajectories. Discovery of new gene expression subtypes further subcategorized this neoplasm and proved to be independent prognostic factors. Clinical outcomes were associated with a combination of genetic, epigenetic and gene expression features, further advancing our prognostic paradigm. Overall, this work reveals fresh insights into CLL oncogenesis and prognostication.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Região Variável de Imunoglobulina/genética , Mutação , Prognóstico , Genômica
11.
Blood ; 140(21): 2193-2227, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001803

RESUMO

With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.


Assuntos
Linfoma , Neoplasias , Humanos , Linfoma/diagnóstico , Linfoma/genética , Linfoma/terapia , Genômica/métodos , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Tomada de Decisão Clínica
12.
NPJ Genom Med ; 7(1): 19, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288589

RESUMO

Current somatic mutation callers are biased against repetitive regions, preventing the identification of potential driver alterations in these loci. We developed a mutation caller for repetitive regions, and applied it to study repetitive non protein-coding genes in more than 2200 whole-genome cases. We identified a recurrent mutation at position c.28 in the gene encoding the snRNA U2. This mutation is present in B-cell derived tumors, as well as in prostate and pancreatic cancer, suggesting U2 c.28 constitutes a driver candidate associated with worse prognosis. We showed that the GRCh37 reference genome is incomplete, lacking the U2 cluster in chromosome 17, preventing the identification of mutations in this gene. Furthermore, the 5'-flanking region of WDR74, previously described as frequently mutated in cancer, constitutes a functional copy of U2. These data reinforce the relevance of non-coding mutations in cancer, and highlight current challenges of cancer genomic research in characterizing mutations affecting repetitive genes.

14.
J Intern Med ; 292(2): 221-242, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34875132

RESUMO

Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.


Assuntos
Linfoma , Neoplasias , Genômica , Humanos , Linfoma/diagnóstico , Linfoma/genética , Linfoma/terapia , Neoplasias/genética , Medicina de Precisão , Prognóstico
15.
Blood ; 138(18): 1721-1726, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34115836

RESUMO

Cereblon is the direct binding target of the immunomodulatory drugs (IMiDs) that are commonly used to treat multiple myeloma (MM), the second most frequent hematologic malignancy. Patients respond well to initial treatment with IMiDs, but virtually all patients develop drug resistance over time, and the underlying mechanisms are poorly understood. We identified an as yet undescribed DNA hypermethylation in an active intronic CRBN enhancer. Differential hypermethylation in this region was found to be increased in healthy plasma cells, but was more pronounced in IMiD-refractory MM. Methylation significantly correlated with decreased CRBN expression levels. DNA methyltransferase inhibitor (DNTMi) in vitro experiments induced CRBN enhancer demethylation, and sensitizing effects on lenalidomide treatment were observed in 2 MM cell lines. Thus, we provide first evidence that aberrant CRBN DNA methylation is a novel mechanism of IMiD resistance in MM and may predict IMiD response prior to treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos Imunológicos/uso terapêutico , Agentes de Imunomodulação/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Ubiquitina-Proteína Ligases/genética , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Elementos Facilitadores Genéticos/efeitos dos fármacos , Humanos , Íntrons/efeitos dos fármacos , Mieloma Múltiplo/genética
16.
Leukemia ; 35(10): 3012-3016, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972667

RESUMO

Clinical and genetic risk factors are currently used in multiple myeloma (MM) to stratify patients and to design specific therapies. However, these systems do not capture the heterogeneity of the disease supporting the development of new prognostic factors. In this study, we identified active promoters and alternative active promoters in 6 different B cell subpopulations, including bone-marrow plasma cells, and 32 MM patient samples, using RNA-seq data. We find that expression initiated at both regular and alternative promoters was specific of each B cell subpopulation or MM plasma cells, showing a remarkable level of consistency with chromatin-based promoter definition. Interestingly, using 595 MM patient samples from the CoMMpass dataset, we observed that the expression derived from some alternative promoters was associated with lower progression-free and overall survival in MM patients independently of genetic alterations. Altogether, our results define cancer-specific alternative active promoters as new transcriptomic features that can provide a new avenue for prognostic stratification possibilities in patients with MM.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/patologia , Regiões Promotoras Genéticas , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Mieloma Múltiplo/classificação , Mieloma Múltiplo/genética , Prognóstico , Taxa de Sobrevida
17.
Leukemia ; 35(5): 1438-1450, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33597729

RESUMO

Multiple myeloma (MM) is an incurable disease, whose clinical heterogeneity makes its management challenging, highlighting the need for biological features to guide improved therapies. Deregulation of specific long non-coding RNAs (lncRNAs) has been shown in MM, nevertheless, the complete lncRNA transcriptome has not yet been elucidated. In this work, we identified 40,511 novel lncRNAs in MM samples. lncRNAs accounted for 82% of the MM transcriptome and were more heterogeneously expressed than coding genes. A total of 10,351 overexpressed and 9,535 downregulated lncRNAs were identified in MM patients when compared with normal bone-marrow plasma cells. Transcriptional dynamics study of lncRNAs in the context of normal B-cell maturation revealed 989 lncRNAs with exclusive expression in MM, among which 89 showed de novo epigenomic activation. Knockdown studies on one of these lncRNAs, SMILO (specific myeloma intergenic long non-coding RNA), resulted in reduced proliferation and induction of apoptosis of MM cells, and activation of the interferon pathway. We also showed that the expression of lncRNAs, together with clinical and genetic risk alterations, stratified MM patients into several progression-free survival and overall survival groups. In summary, our global analysis of the lncRNAs transcriptome reveals the presence of specific lncRNAs associated with the biological and clinical behavior of the disease.


Assuntos
Mieloma Múltiplo/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Apoptose/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Intervalo Livre de Progressão
18.
Blood ; 137(20): 2800-2816, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33206936

RESUMO

The transformation of chronic lymphocytic leukemia (CLL) to high-grade B-cell lymphoma is known as Richter syndrome (RS), a rare event with dismal prognosis. In this study, we conducted whole-genome sequencing (WGS) of paired circulating CLL (PB-CLL) and RS biopsies (tissue-RS) from 17 patients recruited into a clinical trial (CHOP-O). We found that tissue-RS was enriched for mutations in poor-risk CLL drivers and genes in the DNA damage response (DDR) pathway. In addition, we identified genomic aberrations not previously implicated in RS, including the protein tyrosine phosphatase receptor (PTPRD) and tumor necrosis factor receptor-associated factor 3 (TRAF3). In the noncoding genome, we discovered activation-induced cytidine deaminase-related and unrelated kataegis in tissue-RS affecting regulatory regions of key immune-regulatory genes. These include BTG2, CXCR4, NFATC1, PAX5, NOTCH-1, SLC44A5, FCRL3, SELL, TNIP2, and TRIM13. Furthermore, differences between the global mutation signatures of pairs of PB-CLL and tissue-RS samples implicate DDR as the dominant mechanism driving transformation. Pathway-based clonal deconvolution analysis showed that genes in the MAPK and DDR pathways demonstrate high clonal-expansion probability. Direct comparison of nodal-CLL and tissue-RS pairs from an independent cohort confirmed differential expression of the same pathways by RNA expression profiling. Our integrated analysis of WGS and RNA expression data significantly extends previous targeted approaches, which were limited by the lack of germline samples, and it facilitates the identification of novel genomic correlates implicated in RS transformation, which could be targeted therapeutically. Our results inform the future selection of investigative agents for a UK clinical platform study. This trial was registered at www.clinicaltrials.gov as #NCT03899337.


Assuntos
Evolução Clonal/genética , Regulação Neoplásica da Expressão Gênica/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia , RNA Neoplásico/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sequência de Bases , Células Clonais/patologia , Terapia Combinada , Ciclofosfamida/administração & dosagem , Reparo do DNA , Progressão da Doença , Doxorrubicina/administração & dosagem , Feminino , Redes Reguladoras de Genes , Genes Neoplásicos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Prednisona/administração & dosagem , Estudos Prospectivos , RNA Neoplásico/biossíntese , Síndrome , Vincristina/administração & dosagem , Sequenciamento Completo do Genoma
19.
Blood ; 137(21): 2935-2946, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33211804

RESUMO

B-cell receptor (BCR) signaling is crucial for chronic lymphocytic leukemia (CLL) biology. IGLV3-21-expressing B cells may acquire a single point mutation (R110) that triggers autonomous BCR signaling, conferring aggressive behavior. Epigenetic studies have defined 3 CLL subtypes based on methylation signatures reminiscent of naïve-like (n-CLL), intermediate (i-CLL), and memory-like (m-CLL) B cells with different biological features. i-CLL carries a borderline IGHV mutational load and significantly higher use of IGHV3-21/IGLV3-21. To determine the clinical and biological features of IGLV3-21R110 CLL and its relationship to these epigenetic subtypes, we characterized the immunoglobulin gene of 584 CLL cases using whole-genome/exome and RNA sequencing. IGLV3-21R110 was detected in 6.5% of cases: 30 (38%) of 79 i-CLLs, 5 (1.7%) of 291 m-CLLs, and 1 (0.5%) of 189 n-CLLs. All stereotype subset 2 cases carried IGLV3-21R110, whereas 62% of IGLV3-21R110 i-CLL cases had nonstereotyped BCR immunoglobulins. IGLV3-21R110 i-CLL had a significantly higher number of SF3B1 and ATM mutations and total number of driver alterations. However, the R110 mutation was the sole alteration in 1 i-CLL and was accompanied only by del(13q) in 3. Although IGHV mutational status varied, IGLV3-21R110 i-CLL transcriptomically resembled n-CLL/unmutated IGHV CLL with a specific signature including WNT5A/B overexpression. In contrast, i-CLL lacking IGLV3-21R110 mirrored m-CLL/mutated IGHV. Patients with IGLV3-21R110 i-CLL had a short time to first treatment and overall survival similar to those of n-CLL/unmutated IGHV patients, whereas patients with non-IGLV3-21R110 i-CLL had a good prognosis similar to that of patients with m-CLL/mutated IGHV. IGLV3-21R110 defines a CLL subgroup with specific biological features and an unfavorable prognosis independent of IGHV mutational status and epigenetic subtype.


Assuntos
Metilação de DNA , Genes de Cadeia Leve de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação Puntual , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/química , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/classificação , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...